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a b s t r a c t

Problems of the controlled motion of an elastic body are considered in the linear theory. Using the method
of integrodifferential relations, a family of quadratic functionals is introduced, which define the state of
the elastic body, and variational formulations of the initial-boundary-value problem of dynamics are
given. Euler’s equations and boundary and terminal relations corresponding to them are obtained from
the condition for the functionals to be stationary. It is shown that there is a relation between the proposed
formulations and the Hamilton variational principle in the case of boundary-value and time-periodic
problems of dynamics. A numerical algorithm is developed for finding the motions of an elastic body,
based on piecewise-polynomial approximations and a criterion is proposed for estimating the quality of
the approximate solutions. An example of the calculation and analysis of the forced transverse motions
of a rectilinear beam with a square cross section is given for the three-dimensional model.
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Hamilton’s principle and the principle formulated for motions with periodic or time-boundary conditions are the most well known of
the variational approaches to solving dynamic problems in the theory of elasticity (see Ref. 1). Possible generalizations of these variational
principles (Heiliger-Reisner, Washizu, etc.) have also been proposed. Using a Laplace transformation other variational principles have
been obtained for solving initial-boundary-value problems of the dynamics of elastic bodies; these are described together with a detailed
bibliography in Ref. 2. A systematic approach to obtaining variational principles, based on a Friedrichs transformation2, should be noted.
There are also other approaches to deriving variational formulations, of which we note the semi-inverse method.3 Among the numerical
methods of solving initial-boundary-value problems in mechanics there is also the Petrov-Galerkin method.4,5 Recently a number of papers
have been published devoted to the use of the method of least squares in the mechanics of a deformable solid.6

In all these approaches it is assumed that certain constitutive equations, for example, the equations of motion, stress boundary con-
ditions, etc., are satisfied approximately in numerical procedures, while the exact solution is approximated by a finite series of basis
functions. When constructing a finite-dimensional approximation of the motions of an elastic body it is fairly difficult to obtain a bilateral
estimate of the convergence of the numerical process. This does not enable the errors of the calculations, connected, for example, with the
discretization of the problem, the rounding errors, numerical integration, etc., to be effectively monitored.

For a series of mechanical systems with distributed parameters it is possible, using the method of separation of variables, to reduce
the initial problem in partial derivatives to a denumerable system of ordinary differential equations.7 Even then, when obtaining the
eigenfrequencies and an orthonormalized basis of eigenfunctions, it is necessary to use particular approaches, for example, the perturbation
method (the small parameter method) in the case of slightly inhomogeneous systems.8 An accelerated convergence method was proposed
in Ref. 9, based on the classical Rayleigh–Ritz approach, which enables one, with a specified accuracy, to obtain the eigenfunctions for
one-dimensional problems with arbitrarily distributed mechanical parameters. Various approaches are used for the effective modelling
and control of the motions of elastic systems with distributed parameters, based, for example, on the decomposition method10,11 or direct
discretization.12

The purpose of the present paper is to develop, for dynamic problems of the linear theory of elasticity, the method of integrodifferential
relations proposed in previous papers,13–21 based on the integral representation of the local equations of state of a mechanical system. One
of its advantages compared with the classical variational methods in dynamics is the fact that a minimum of a non-negative functional is
sought. Note also that bilateral energy estimates of the quality of any admissible motion (not only optim motion) can be obtained in explicit
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form. Local estimates, which follow from the proposed integrodifferential formulation of problems of the theory of elasticity, provide one
with the possibility of finding regions where the numerical solution is unreliable and effectively use different strategies to improve its
quality.

1. Formulation of the problem. We will consider controlled dynamical systems with distributed inertial and elastic parameters, defined
by linear partial differential equations with initial and boundary conditions. The most well-known examples of such systems, which will
be discussed below or to which the approach proposed in this paper can be applied, are models describing the elastic motions of a body,16

beams14, strings, membranes, plates, etc. within the framework of the linear theory.
Consider an elastic body, occupying in n-dimensional space a certain bounded region�with a piecewise-smooth boundary �. We will

first introduce the force variables p, � and the geometrical variables u, �, which characterize the behaviour of the elastic system and depend
on the time t and on the n-dimensional vector x = {x1,. . .,xn} of the space coordinates. Here p and u are vector functions of the momentum
and displacement densities respectively, while � and � are tensors, defining the distribution of the elastic stresses and strains in time and
space respectively.

In the linear theory of elasticity, the local equations of state of the medium, relating the momentum density p and the velocities of
points of the system ∂u/∂t, and also the stresses � and the strains �, can be written in the form

(1.1)

Here the strain tensor � depends linearly on the displacement vector u

(1.2)

Here the volume density of the body � and the modulus of elasticity tensor C are specified functions of the x coordinate. The components
Cijkl of the fourth-rank tensor C possess the following symmetry properties: Cijkl = Cijlk = Cklij. To abbreviate the notation we will introduce
the vector �, which defines the relation between the displacements and the momentum density, and also the dimensionless tensor �,
which specifies the relations of Hooke’s law. In the second equation of (1.1) the colon between the tensors denotes their double scalar
product (double convolution with respect to the indices). In Eq. (1.2) we have introduced the gradient operator �= (∂/∂x1,. . .,∂/∂xn)T in
x-coordinate space.

Using relations (1.1) and (1.2), the equation of motion of an elastic body, written in displacements

can be represented, using the stress tensor � and the momentum density vector p, in the form

(1.3)

Here f is the vector of the external bulk forces, which may be either specified functions of time t and of the x coordinates, or unknown
actions, if we are considering the problem of controlling the motions of an elastic body. The dot between the vectors and tensors indicates
the scalar product. Since Eq. (1.3) relates the elastic and inertial bulk forces, henceforth this relation will be called the dynamic-equilibrium
equation.

We will consider the case of linear boundary conditions, which are expressed in terms of the components of the displacement vector u
and the external load vector q in the form

(1.4)

where n is the unit vector of the outward normal to the boundary of the body � and vk is the component of the boundary vector v, which
is either a specified function of t and x, or is controllable. The coefficients �k and 	k depend on the x coordinates and define the type of
boundary conditions. Thus, the function vk defines the displacement uk if the coefficients �k = 1 and 	k = 0 are specified on a certain part
of the boundary �(k)

u ∈ �, or defines the external load qk if �k = 0 and 	k = 1 on the part of the boundary �(k)
� ∈ �. Conditions (1.4) include

different forms of elastic foundation, if, for any of the indices k = 1, . . ., n, a pair of coefficients �k and 	k is simultaneously non-zero (usually
�k	k > 0).

For a complete description of the motion of an elastic body it is necessary to determine its state at the initial instant of time (without
loss of generality when t = 0). This can be done by specifying the initial distributions of the elastic displacements u and the momentum
density p as fairly continuous functions of the x coordinates:

(1.5)

Relations (1.1)–(1.3) describe the stress-strain state at each internal point of the elastic body. For a solution of the initial-boundary-value
problem (1.1)–(1.5) to exist, the stresses at internal points of the body must convert continuously into stresses on the boundary. Thus, the
values of the displacements of internal points directly convert into boundary values. Here it is implicitly assumed that the transition of
the components of the modulus of elasticity tensor C, defined for internal points, is continuous on the boundary of the body �.1 On the
other hand, it is necessary to bear in mind that boundary conditions (1.4) cannot be specified without taking into account the physical
factors which generate these conditions. For example, a certain part of the boundary may be the interface of two or several media (both
elastic and inelastic). In this case any boundary point belongs both to the body considered and to the bodies which generate these boundary
conditions. Certain internal surfaces of the body�may also be interfaces of different materials. Any point on these surfaces simultaneously
belongs to parts of the body with different mechanical properties, i.e. the modulus of elasticity tensor C and the function of the density �
on these surfaces, generally speaking, are not defined and, consequently, relations (1.1) are uncertain.
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In order to take this kind of uncertainty into account, variational approaches are used in static problems of the linear theory of elasticity,
for example, the principles of the minimum of the potential and complementary energy.1 In dynamics, variational principles are only
formulated for boundary-value problems.

We will give two classical examples which will be required later.
When the displacements u are specified at the beginning (t = 0) and the end (t = tf) of the motion, the kinetic energy function T and

the total potential energy function� exist, which are expressed in terms of the displacements, and the surface loads q do not change for
variations 
u, the principle that the Hamiltonian is stationary follows from the principle of virtual work

(1.6)

In this problem relations (1.1) are satisfied, and the components uk of the displacement vector u must strictly satisfy boundary condition
(1.4) on the parts of the boundary �(k)

u ⊂ �, where �k = 1 and 	k = 0. The equation of dynamic equilibrium (1.3) and the boundary conditions
in the stresses on the parts of the boundary �(k)

� = �\�(k)
u , where the coefficients �k = 0 and 	k = 1 are specified, appear in the conditions for

the Hamiltonian H, defined in system (1.6), to be stationary.
If the initial and final distributions of the momentum density p are specified, functions of the complementary kinetic energy Tc and the

total complementary energy�c exist, expressed respectively in terms of the momentum density p and the stress �, and for variations of
the equilibrium fields 
p and 
� the boundary displacements do not change, we can formulate the principle for the complementary energy
to be stationary

(1.7)

According to this principle, the equilibrium fields of the momentum density p and the stresses � satisfy relations (1.1), while the
components of the tensor � strictly satisfy the boundary conditions in stresses on the parts of the boundary �(k)

� . Kinematic equation (1.2)
and the boundary conditions specified in displacements on the parts of the boundary �(k)

u are equivalent to the conditions for the functional
Hc, complementary to the Hamiltonian, to be stationary.

Note that variational principles (1.6) and (1.7) are formulated for dynamic boundary-value problems of the linear theory of elasticity
and, generally speaking, cannot be used in this form to solve initial-boundary-value problem (1.1)–(1.5).

2. The method of integrodifferential relations. In the proposed approach, unlike the classical formulations, instead of local equations of
state of the elastic body (1.1), we consider a single integral relation, connecting the vector of the momentum density p and the velocity
vector ∂u/∂t, and also the stress tensor � and the strain tensor �.

The following integrodifferential formulation of the initial-boundary-value problem of the motion of an elastic body (1.1)–(1.5) was
given in Ref. 14: it is required to obtain unknown fields of the displacements u*, the stresses �* and the momentum density p*, which
satisfy the following integral relation

(2.1)

with strict satisfaction of kinematic equation (1.2), the dynamic equilibrium equation (1.3), and the boundary and initial conditions (1.4)
and (1.5).

Note that the integrand function �+, defined in system (2.1), has the dimension of energy density and is non-negative. It follows from the
last property that the integral�+ is non-negative for arbitrary functions u, � and p, This property enables us to reduce integrodifferential
problem (1.2)–(1.5), (2.1) to a minimization formulation, namely, it is required to obtain the admissible functions u*, �* and p* which give
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a minimum (zero) value to the functional�+:

(2.2)

with strict satisfaction of constraints (1.2)–(1.5).
We will denote the real and arbitrarily chosen admissible displacements, stresses, and momenta by u*, �*, p* and u, � and p respectively

and put

Then

where 
u�+, 
��+, 
p�+ are the first variations with respect to the variables u, � and p, while 
2�+ ≥ 0 is the second variation of the
functional�+.

It was shown in Refs. 13, 17 and 20 that it is possible to construct families of equivalent variational formulations with different minimised
functionals for static problems of the linear theory of elasticity. Similarly, in dynamic problems one can introduce the following parametric
family of quadratic functionals

(2.3)

for which, when constraints (1.2)–(1.5) are satisfied, the stationary conditions are equivalent to constitutive relations (1.1) of the state of
the elastic body. In expressions (2.3) for the functional � the quantities � and 	 are real constants. When � = 	 = ½ the integral of � is
identical with the non-negative functional�+, defined by relations (2.1). If 	>0 and � /= 0, for each functional�[	] there is a problem of
conditional minimization, similar to problem (1.2)–(1.5), (2.2).

For arbitrary non-zero values of � and 	 (�	 /= 0) we can define a general variational formulation of the initial-boundary-value problem
of linear elasticity, namely, it is required to obtain the unknown functions u*, �*, p*, which, when constraints (1.2)–(1.5) are satisfied, give
stationary values to the functional�

(2.4)

After integration by parts, taking constraints (1.2)–(1.5) into account, we obtain expressions for the first variations

(2.5)

It can be seen from expressions (2.5) that the first variations of the functional � are equal to zero in any admissible variations of the
functions 
u, 
�, 
p, if relations (1.1) are satisfied.

We will obtain, in explicit form, the necessary conditions for the functional � to be stationary (Euler’s equations). To do this it is
necessary to take into account the relation between the stress tensor � and the momentum density vector p, which is defined by dynamic
equilibrium equation (1.3) and, of course, the relation between their variations 
p and 
�

(2.6)

Introducing the auxiliary vector

(2.7)
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we obtain, taking constraint (2.6) into account, the following expressions for the first variations 
�

(2.8)

Taking into account conditions (1.4) and (1.5), imposed on the boundary and initial variations of the unknown functions 
u, 
�, 
p, we
can write Euler’s equations with the corresponding boundary and terminal relations

(2.9)

With respect to the unknown vector �, system (2.9) is a terminal-boundary-value problem of the linear theory of elasticity with a unique
zero solution, from which the conditions � = 0 and � = 0 follow directly. In other words, if the solution u*, �* and p* of problem (1.2)–(1.5),
(2.4) exists, system (2.9) together with constraints (1.2)–(1.5) is equivalent to the initial dynamic problem of the linear theory of elasticity
(1.1)–(1.5).

3. Analysis of the variational formulations. We will consider in more detail one functional of the family (2.3) when � = −	 = 1/2
(�- =�|	=−1/2). We will represent it in the form

(3.1)

Note that the integral �u depends only on the displacements u, while the vector-function u does not occur in the expression for ��.
The bilinear functional�, in turn, is explicitly independent of the elastic and inertial properties of the solid, and after integration by parts
it can be reduced to the form

(3.2)

As in problems (1.6) and (1.7), we will consider the case when, on the part �(k)
� of the boundary �, the component qk of the load vector

q �k = 0, 	k = 1 (in Eq. (1.4)) is specified in terms of the function vk, whereas on the remaining part of the boundary �(k)
u ⊂ � the component

uk of the displacement vector u (�k = 1, 	k = 0) is specified. We emphasise that the parts of the boundary �(k)
� ,�(k)

u satisfy the following
conditions

i.e., there are no mixed boundary relations connecting the components of the displacement vector and the strain tensor. Then, after
substituting expression (3.2), the functional�- can be rewritten as follows:

(3.3)
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Table 1

Condition A Condition B �u �p

u(0, x) = u0(x) u(tf , x) = uf(x) 0

∫
�

[uf · p|t=tf − u0 · p|t=0]d�

p(0, x) = p0(x) p(tf , x) = pf(x)

∫
�

[pf · u|t=tf − p0 · u|t=0]d� 0

u(0, x) = u0(x) p(tf , x) = pf(x)

∫
�

[pf · u|t=tf ]d� −
∫
�

[u0 · p|t=0]d�

p(0, x) = p0(x) u(tf , x) = uf(x) −
∫
�

[p0 · u|t=0]d�

∫
�

[uf · p|t=tf ]d�

u(0, x) = u0(tf , x) p(0, x) = p(tf , x) 0 0

If, at the initial and final instants of time, we are given the distribution in the body of either the displacements or the momentum density,
the integral�- splits into two independent parts

(3.4)

The functional Hu depends only on the displacement function u, while H� depends on the stress tensor � and the momentum density
vector p, and�u and�p are integrals over the region�, which depend on the functions u and p respectively. In Table 1 we show the time
boundary conditions (A, B) and explicit expressions for the integrals�u and�p for different types of dynamic problems. The first four rows
correspond to boundary-value problems, while the last row corresponds to a time-periodic problem.

According to the first equality of (2.8), when taking constraints (1.3) and (1.4) and the time boundary conditions shown in the table into
account, the stationary conditions for the functional�- can be represented in the form

(3.5)

Consequently, the boundary-value problem considered can be split into two independent subproblems.

Problem 1. It is required to find the admissible field of displacements u*, which satisfies conditions (1.4) on the parts of the boundary
�(k)
u (k = 1, . . . , n), and also the initial and final conditions from the table, specified in displacements, and which delivers a stationary value

to the functional Hu:

(3.6)

Problem 2. It is required to find the equilibrium fields of the stresses �* and the momentum density p*, which satisfy conditions (1.4)
on the parts of the boundary �(k)

� (k = 1, . . . , n), and also the initial and final conditions from the table, specified in momenta, and which
yield a stationary value to the functional H�:

(3.7)

It is important to note that if the displacements (the first row of the table) are specified at the initial and final instants of time, Problem
1 agrees with the Hamilton stationarity principle (1.6) (Hu = H). If the distribution of the momentum density vector (the second row of the
table) is determined at the beginning and end of the process, Problem 2 corresponds completely to the complementary Hamilton principle
(1.7) (H� = Hc). Both these classical principles follow from Problems 1 and 2 in the periodic case (the last row of the table).

Unlike variational principles (1.6) and (1.7), which are formulated for dynamic boundary-value problems, in the proposed approach the
functional� can also be used to solve initial-boundary-value problem (1.1)–(1.5). When initial conditions (1.5) are specified the last term
in relations (3.3) depends on the scalar product of the vectors u and p, taken at the final instant of time. This does not enable the functional
�- to be split into two independent parts. The separation into two subproblems (3.6) and (3.7) is even impossible for the boundary-value
problems defined in the table if the mixed conditions (�k	k /= 0) are specified in some part of the boundary � of the region�. In this case
the variational problem (2.4) with the corresponding constraints must be solved simultaneously in displacements, stresses and momenta.

4. Variational formulation of the initial-boundary-value problem in displacements and stresses. When solving dynamic problems of the
linear theory of elasticity in the proposed variational formulation (1.2)–(1.5), (2.4) one has to deal with quite a large number of unknown
quantities. Thus, for a three-dimensional problem (n = 3) it is necessary to determine six components of the displacement vectors u and the
momentum density p and six components of the stress tensor �. Even after solving vector equilibrium equation (1.3), nine independent
functions remain in a functional. This may considerably limit the applicability of numerical approaches. To increase the effectiveness of
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computational algorithms, it is possible to use special variational formulations in which part of the equations of states (1.1) is regarded as
additional constraints on the admissible states of the solid.

We will consider a non-negative functional from the family (2.3), namely, the integral�with � = 0 and 	 = 1/
√

2:

(4.1)

For the correct formulation of the minimization problem, corresponding to functional�0, the relation of the velocity and momentum
density � = 0 in Eqs (1.1) must be regarded as a local constraint on the displacement and momentum fields. Then, the variational formulation
sounds as follows: it is required to obtain such displacement and stress fields u* and �*, which give the functional �0 a minimum value
for the specified constraints

(4.2)

Just as in Section 3, we will denote the actual admissible displacements and stresses by u* and �* and u and � respectively. We will
introduce the notation

and we will write the variations of the functional

The second variations are non-negative by virtue of the fact that the integrand function �0 is quadratic in the variations 
u and 
�
(
2�0 ≥ 0). The first variations of the functional�0 are equal to zero for arbitrary 
u and 
� if the equality � = 0 is satisfied.

In problem (4.2) the displacement vector u and the stress tensor �, and also their variations 
u and 
�, are related, in addition to
possible mixed boundary conditions, by the dynamic equilibrium relations

(4.3)

To determine the conditions for the functional�0 to be stationary with corresponding constraints, we will introduce into consideration
the auxiliary tensor , which defines the equilibrium fields of the displacements and stresses so that

(4.4)

After a number of substitutions and integrations by parts, the first variations of the functional�0, expressed in terms of the tensors �
and , have the form

(4.5)
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The system of Euler’s equations and the corresponding boundary and terminal conditions can be obtained from conditions of stationarity
(4.5), taking into account the boundary and initial conditions, imposed on the variations of the tensor ,

(4.6)

If the solution of the original dynamic problem exists, it can be shown that the terminal-boundary-value problem (4.6) in the unknown
tensor � has only the trivial solution � = 0. This indicates that the stationarity conditions (4.5) together with constraints (4.2) are equivalent
to the complete system of equations (1.1)–(1.5), describing the motions of an elastic solid in the linear theory of elasticity.

5. Numerical algorithm and estimates of the quality of the solution. We will consider one of the possible algorithms for the numerical
construction of the solution of minimization problem (4.2) and illustrate it using the example of the motions of a homogeneous isotropic
elastic solid (n = 3). We will confine ourselves to the case when there are no bulk forces f = 0.

The proposed algorithm can be described in general form as follows. Initially we specify the integer number N and choose approximations
ũ, �̃ of the solution u* and �* of problem (4.2) in the form of finite sums

(5.1)

where {�k(t,x), k = 1,2,. . .} is a certain complete denumerable system of linearly independent functions, and u(k) and �(k) are unknown
real coefficients, written in vector and tensor form. The basis functions �k are chosen so that the approximations ũ, �̃ can exactly satisfy
the dynamic-equilibrium equation, the boundary and initial conditions defined in problem (4.2) for a certain set of constants u(k), �(k).
It directly follows from this that the boundary vector v(t, x), x∈� and functions of the initial distribution of the displacements u0(x) and
momenta p0(x) must be represented in the form

where v(k), u(0k) and p(0k) are fixed coefficients.
In the next step the part of the parameters u(k), �(k) is determined so that the approximations (5.1) satisfy all conditions (4.2). The

admissible approximations ũ, �̃ obtained are substituted into functional�0. The problem of the conditional minimization of the functional
�0 with respect to the unknowns u and � becomes a problem of unconditional minimization of the function�0(w), wherew = {u(k)

i
,�(k)

ij
}

is the set of all independent parameters which remain after constraints (4.2) are satisfied. Since the function�0 is quadratic in w, to obtain
the optimum set of parameters w* and its minimum value�∗

0 =�0(w∗) ≥ 0 it is necessary to solve the linear system of algebraic equations
∂�0(w)/∂w = 0.

Note that the functional �0 reaches its absolute zero value only for the exact solution u*, �*. In order to estimate the quality of the
approximate solution ũ∗ = ũ(t, x,w∗), �̃∗ = �̃(t, x,w∗) obtained, we can use the following criterion

(5.2)

Here 
 � 1 is a positive dimensionless quantity, which defines the quality of the solution, �̃∗ > 0 is the approximate value of the integral
of the total mechanical energy W, stored by the elastic solid during the motion, and � is the volume density of this energy. The quantity
	 can be regarded as the integral relative error of the approximate solution, whereas the function �̃∗

0 of time t and coordinate x can be
considered as the distribution of the local energy error. The mechanical energy function W̃∗ includes the term W0, which determines, in
explicit form, the difference between the work done by the external forces on the approximate motions ũ∗, �̃ and the energy W̃∗(t) − W̃∗(0)
stored by the body. It follows from the expression for the derivative with respect to time of the energy W0 in the penultimate formula of
(5.2) that the value of the energy imbalance is directly related to the value of the relative integral error	.

6. Controlled motions of a three-dimensional elastic solid. We will consider, as an example, the motions of an elastic solid having, in
the undeformed state, the shape of an elongated rectangular parallelepiped (Fig. 1). It is assumed that the solid is made of a homogeneous
isotropic material with modulus of elasticity E and Poisson’s ratio � and volume density �. The following geometric parameters are given:
�= {x1, x2, x3: 0 < x1 < L,|x2| < a,|x3| < a}, where L is the length of the solid and 2a is the size of the cross section. The final instant of time tf is
fixed. We will consider the case when, at the initial instant of time t = 0, there are no elastic displacements in the solid and all points are at
rest. We will chose as the control the time-polynomial of the translational displacement of the face x1 = 0 as a solid whole along the Ox3,
where O is the origin of coordinates. We will assume that no external bulk forces act on the solid.
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Fig. 1.

For this problem the conditions on the boundary can be written in the form

(6.1)

The component v3 of the boundary function v from Eqs (1.4) is defined in the class of polynomials as a function of time with a fixed
degree Nv

(6.2)

where 
(k)
3 are specified constants. The initial conditions (1.5) have zero right-hand sides

(6.3)

Polynomial approximations for constructing and optimizing the longitudinal motions of an elastic solid of the same shape and an
infinitely thin rod were used earlier in Ref. 18, while piecewise-polynomial splines were proposed in Ref. 21 to model the transverse
motions of an Euler–Bernoulli beam. In these papers the integral�+ or its analog was considered as the minimized functional for the beam
model. In this paper we use a variational formation of the problem in the form (4.2).

7. Approximations of the displacement and stress fields. We will briefly write the finite-dimensional approximations employed and
their properties. We will choose the degree of approximation Mp and the following polynomial functions ũ�, �̃kl(k, l = 1,2,3) along the x2
and x3 coordinates for the unknown components of the displacement vector u and the stress tensor �:

(7.1)

where u(i,j)
k

and �(i,j)
kl

are functions of the time t and the x1 coordinate, defined below.
The proposed approximations satisfy boundary conditions (6.1) exactly on the sides of the solid parallel to the Ox1 axis. It was shown

in Ref. 19 that the symmetry of the solid about the Ox1x2 and Ox1x3 coordinate planes enables us to split the initial problem into four
independent subproblems: three-dimensional tension-compression and torsion along the x1 axis, and also bending around the x2 and x3
axes. For the motions of the cross section x1 = 0 considered, only bending around the x2 axis occurs. The proposed functions (6.2) do not
disturb the symmetry of the problem.
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Fig. 2.

We will split the rectangular regionϒ = {t, x1:t ∈ (0, tf), x1 ∈ (0, L)} in the time space t and coordinate space x1 into N × M rectanglesϒkl
with vertices Qk–1, l–1, Qk–1, l, Qk, l–1, Qk,l where

(see Fig. 2). We will designate the sides of the rectanglesϒkl as

In each four-dimensional region

we specify the polynomials

(7.2)

Here u(J)
k

and �(J)
kl

are unknown real coefficients. The integer number N2 is chosen to be fairly high in order to satisfy the dynamic-
equilibrium equation in problem (4.2) and boundary conditions (6.1) and (6.2). When using variational approaches it is necessary, in
addition, to satisfy the following joining conditions of the individual elements�kl

(7.3)

8. Numerical results. We will give an example of the use of the algorithm, proposed in Section 5, and we will analyse the numerical results
obtained when modelling the motions of an elastic body. We chose the following dimensionless geometrical and mechanical parameters
for the calculations

and we specified the integer numbers defining the order of the approximations of the unknown functions on an element:
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Fig. 3.

We used a mesh uniform in time, with nodal values ti = itf/N (i = 1,. . .,N). After satisfying the dynamic-equilibrium relations, and the
boundary, initial and interelement conditions, the dimension of the system was NDOF = 1985. We chose the control law (6.2), which transfers
the section x1 = 0 from the initial zero state to the specified final state, to be cubic (Nv = 3) in time, namely,

For specified parameters, the value of the integral over time of the total mechanical energy, stored by the body during the motion, is
approximately equal to  = 0.1822. The absolute and relative errors (5.2) were�0 = 0.0020 and	= 1.1%.

In Fig. 3 we show the relative elastic displacement w = u3(t, L,0,0)-
(t) of the central point of the section x1 = L as a function of the time t.
The linear total mechanical energy density function of the body

is shown as a function of the time t and the coordinate x1 in Fig. 4. The local error distribution

in sections x1 = const along the Ox1 axis is shown in Fig. 5. It can be seen that the largest error is concentrated about the controlled section
x1 = 0.

Unlike the Euler–Bernoulli beam model (see, for example, Ref. 14), the three-dimensional model of the motions of a beam with a square
cross section enables us to obtain the local parameters of motion at any point of the elastic body at an arbitrary instant of time. For example,
in Fig. 6 we show the shape of the deformed section x1 = 0.05 at the instant of time t = 0.8. The distribution of the local error �0 in this
section at t = 0.8 is shown in Fig. 7. It can be seen that the error is close to zero almost everywhere, with the exception of small regions
close to the corners of the section. Note that the section was chosen to be close to the fixed end, in order to emphasise the existence of a
singularity in the problem. Unfortunately, in order to obtain more reliable solutions in the region of the singularity it is necessary to use
different approaches, including methods for the mesh adaptation and mesh refinement, and also the use of singular finite elements. We
have used some of these methods to improve the quality of the solution of static problems of the linear theory of elasticity.20 However,
the use of these approaches is outside the scope of this paper.

In the motion considered, the mechanical energy W initially increases from a zero value to a certain maximum value when t ≈ 1.7, after
which it decreases monotonically, as seen from Fig. 8. The local change in the value of the energy W0 in Fig. 9, due to the discretization of
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Fig. 4.

Fig. 5.

Fig. 6.
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Fig. 7.

Fig. 8.

the model, reflects the quality of the numerical solution obtained. The value of “parasitic” energy as a function of time is small compared
with the total mechanical energy of the beam during motion. When the accuracy of the solution is increased this energy imbalance will be
reduced.

The distribution of the linear power density of this “parasitic” energy
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Fig. 9.

Fig. 10.

is shown in Fig. 10. It can be seen that the maximum change in the energy of a finite-dimensional system occurs close to the controlled
section (the fixed end), just where the maximum error in calculating �1 is concentrated (see Fig. 5).
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